NTP technical report on toxicity studies of t-butyl alcohol (CAS No. 75-65-0). Administered by inhalation to F344/N rats and B6C3F1 mice.

نویسنده

  • J Mahler
چکیده

t-Butyl alcohol is widely used in the manufacture of perfumes and a variety of cosmetics. It is also used as a raw material in the production of isobutylene, which may be used to produce methyl tertiary butyl ether, a common gasoline additive, or to produce butyl elastomers used in the production of automobile tires. The National Cancer Institute nominated t-butyl alcohol to the NTP for study as a result of a review of chemicals found in drinking water. In addition to the high annual production and the potential for occupational exposure, there is also a potential for human exposure to t-butyl alcohol by the inhalation route from its use as an additive in unleaded gasoline. Therefore, toxicity studies of t-butyl alcohol were conducted in male and female F344/N rats and B6C3F1 mice by whole-body inhalation. Animals were evaluated for hematology, clinical chemistry, urinalysis, reproductive toxicity, and histopathology. The genetic toxicity of t-butyl alcohol was assessed by testing the ability of the chemical to induce mutations in various strains of Salmonella typhimurium and L5178Y mouse lymphoma cells or sister chromatid exchanges and chromosomal aberrations in cultured Chinese hamster ovary cells, and by measuring the frequency of micronucleated erythrocytes in rat bone marrow and mouse peripheral blood. In the 18-day inhalation studies, groups of five male and five female rats and mice were exposed to t-butyl alcohol by inhalation at concentrations of 450, 900, 1,750, 3,500, and 7, 000 ppm for 6 hours per day, 5 days per week, for 12 exposure days. All rats and mice exposed to 7,000 ppm were killed moribund following a single 6-hour exposure. One 3,500 ppm male mouse died on day 3. Final mean body weights of 3,500 ppm male and female rats were significantly lower than those of the controls. Final mean body weights and body weight gains of all other exposed groups were similar to those of the controls. In animals exposed to 3.500 ppm, the thymus weights of male and female rats and female mice were less than those of the controls. The liver weights of male and female mice exposed to 3,500 ppm were greater than those of the controls. No grss or microscopic lesion were present in rats or mice. In the 13-week inhalation studies, groups of 10 male and 10 female rats and mice were exposed to t-butyl alcohol at concentrations of 0, 135, 270, 540, 1,080, and 2,100 ppm for 6 hours per day, 5 days per week, for 13 weeks. One 2,100 ppm and five 1,080 ppm male mice died before the end of the studies. The final mean body weight of 2,100 ppm female mice and the mean body weight gains of 1,080 and 2,100 ppm female mice were significantly lower than those of the controls. Clinical findings of toxicity in the 1,080 ppm male mice died during the studies included rough coats and emaciated appearance, hypoactivity, and prostration. Minimal decreases in hematocrit values, hemoglobin concentrations, and erythrocyte counts occurred in the 1,080 and 2,100 ppm male rats at week 13. Hemoglobin concentrations and/or hematocrit values were also minimally decreased in male rats in the lower exposure groups. At week 13, a minimal decrease in urine pH occurred in the 1,080 ppm female and 2,100 ppm male and female rats. Neutrophilia occurred in the 2,100 ppm male mice. Organ weight differences in exposed rats included increased absolute and relative kidney weights of 1,080 ppm males and 2,100 ppm males and females and increased relative liver weights of 1,080 and 2,100 ppm females. There were no treatment-related gross findings in male or female rats or mice; no microscopic lesion occurred in female rats or male or female mice that survived to the end of the study. In male rats, there was an exposure concentration-related increase in the severity of chronic nephropathy. Splenic lymphoid depletion was present in male mice that died during the studies; this lesion was presumed to be secondary to stress. t-butyl alcohol produced no adverse effects on reproductive parameters in male or female rats or mice. The results of all tests of t-butyl alcohol for induction of genetic damage in vitro and in vivo were negative. In vitro, t-butyl alcohol was negative in Salmonella typhimurium and mouse lymphoma cell mutation test, and it did not induce sister chromatid exchanges or chromosomal aberrations in cultured Chinese hamster ovary cells. These in vitro studies were conducted with and without metabolic activation (S9). In vivo, no increase in the frequency of micronucleated erythrocytes was observed in peripheral blood samples from mice administered t-butyl alcohol in drinking water for 13 weeks. Also, induction or micronucleated erythrocytes was noted in bone marrow cells of rats administered t-butyl alcohol by intraperitoneal injection. In summary, inhalation exposure of rats and mice to t-butyl alcohol resulted in deaths following a single 7,000 ppm exposure and clinical findings of alcohol toxicity (hyper- and hypoactivity, ataxia) at concentrations of 900 ppm and greater in rats and 1,750 ppm and greater in mice. In 13-week studies at concentrations up to 2,100 ppm, only one death (that of a 2,100 ppm mouse) was attributed to chemical exposure. The most notable evidence of toxicity at the end of 13 weeks was limited to males and consisted of increased kidney weights, which correlated microscopically to increased severity of chronic nephropathy. Reproductive parameters in male and female rats and mice were unaffected after 13 weeks of exposure, and the results of all tests for genetic toxicity were negative.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NTP technical report on the toxicity studies of Formic Acid (CAS No. 64-18-6) Administered by Inhalation to F344/N Rats and B6C3F1 Mice.

Formic acid occurs in a variety of plants and fruits, mammalian tissues, and insect venoms. It is used industrially in preparing a variety of drugs, dyes, and chemicals; as a decalcifier; and in leather tanning. Formic acid also is an environmental contaminant of air and water and has been identified as the toxic intermediate (formate) in methanol poisoning. Two- and 13-week toxicity studies of...

متن کامل

NTP technical report on the toxicity studies of N,N-Dimethylformamide (CAS No. 68-12-2) Administered by Inhalation to F344/N Rats and B6C3F1 Mice.

N,N-Dimethylformamide (DMF), a colorless liquid with a high boiling point, is a solvent used in a large number of industrial processes. Male and female F344/N rats (30/sex/group) and B6C3F1 mice (10/sex/group) were exposed to DMF vapors at concentrations of 0, 50, 100, 200, 400, or 800 ppm, 6 hours/day, 5 days/week, for 13 weeks in whole body exposure inhalation studies. In addition to histopat...

متن کامل

Pyrogallol-associated dermal toxicity and carcinogenicity in F344/N rats and B6C3F1/N mice.

Pyrogallol (CAS No. 87-66-1), a benzenetriol used historically as a hair dye and currently in a number of industrial applications, was nominated to the National Toxicology Program (NTP) for testing based on the lack of toxicity and carcinogenicity data. Three-month and two-year toxicity studies to determine the toxicity and carcinogenicity of pyrogallol when applied to naïve skin (i.e. dermal a...

متن کامل

NTP technical report on the toxicity studies of Tetrachlorophthalic Anhydride (CAS No. 117-08-8) Administered by Gavage to F344/N Rats and B6C3F1 Mice.

Tetrachlorophthalic anhydride (TCPA) is primarily used as a flame retardant in plastics. Toxicology studies were conducted by administering TCPA by oral gavage to F344/N rats and B6C3F1 mice for 13 weeks. Evaluations included histopathology, clinical pathology, and analyses of reproductive system parameters. The genetic toxicity of TCPA was assessed with in vitro tests of mutagenicity in Salmon...

متن کامل

PBBs: potential effects in children.

1. Ashby J. a2p-Globulin nephropathy in white ravens [letter]. Environ Health Perspect 104 (12):1264 (1996). 2. Baserga R The cell cycle: myths and realities. Cancer Res 50:6769-6771 (1990). 3. Barrett JC, Huff JE. Cellular and molecular mechanisms of chemically induced renal carcinogenesis. In: Nephrotoxicity. Mechanisms, early diagnosis, & therapeutic management (Bach PH, Gregg NJ, Wiks MF, D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicity report series

دوره 33  شماره 

صفحات  -

تاریخ انتشار 1993